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Abstract. Models of a coupled bll Inear structure are studied here. Included are appli- 
cations to immunology and generalized defense processes. In some cases, coupled bi- 
linear systems arise naturally and in others they represent valid approximations to more 
highly nonlinear systems. A basis 1s developed for multi-level command and control. 
Finally, hierarchical pursuit-evasion strategies are introduced, and plans are presented 
for more detailed studies. 
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INTRODUCTION 

The purpose of this paper is to analyze the hier- 
archical structure of generalized defense and 
pursuit-evasion games which are amenable to 
bilinear or linear system analysis. Also, coupled 
bilinear systems, CBLS, sometimes arise in a 
natural manner for complex physical processes. In 
other cases, they may be developed to approximate 
input-output dynamics of a more highly nonlinear 
nature. Cellular fission, nuclear fission, convec- 
tive and conductive heat transfer and certain chem- 
ical reactions are good examples of the former, 
while rigid-body dynamics, such as appear In 
aircraft, ship and robotic control, are good 
examples of the latter. Even for many of these 
cases, however, the CBLS representation may be 
exact by a redefinition, and an Increase in the 
number, of state variables. BLS and CBLS models 
for some of these are studied by Mohler (1973). 

Time and space limitations only permit a prelim- 
inary analysis of this complicated problem along 
with a systematic overview. However, a base 1s 
established for future research with particular 
application to generalized defense processes (human 
and  national). 

For    this 
equation, 

dx 
dt 

STRUCTURAL PROPERTIES 

paper, BLS are given by the state 

Ax 
m 

k=l 
^k^^ + Cu, (1) 

where x C R", 
u^, and A, C, 
priate real constant matrices.  Sometimes, It is 
convenient to define the output of the BLS (1) by 

u C R"* with components uj, ..., 
B|(, k = 1  m, are appro- 
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y =■ Dx, 

where y C RP, and 
stant matrix. 

(2) 

D is an appropriate real con- 

It is readily seen that addending the state vector 
with <n+l 1, allows (I) to be written 

the homogeneous form (HBLS);  i.e.,  (I) 
zero C. 

with 

Then It is shown by Brockett (1973) that systems 
with state polynomials (products of states) and 
quotients of states may be decomposed into new 
HBLS. Consequently, it is noted by Tenney (1984) 
that systems, which involve transcendental func- 
tions of the state, may be decomposed into "poly- 
nomial systems" by merely defining new state 
variables    as    the    functions     themselves. This 
generalization of BLS makes them and certain of 
their associated methodologies amenable to a 
larger class of nonlinear systems which includes 
rigid-body dynamics such as for maneuvering air- 
craft, ships, land vehicles and robots. Also, 
predator-prey processes, combat games, imunology, 
electrical-power generation, and heating-ventilat- 
ing and air-conditioning (HVAC) processes have 
similar representations. All of these systems are 
quite complex with hierarchical structures of 
appropriate orders. 

Within each BLS itself there evolves a certain 
hierarchical structure which is associated with a 
canonical" decomposition such as convenient for 

its Vol terra representation (assuming its exist- 
ence, of course). In this manner, BLS (1) and (2) 
may be generated by 

y = Dx = D^x,«D|;x.. 

1=1 1=1 
(3) 

where 

Xj - Ax, + Cu, 



*2 = *^2*E  Vk'^l ^f^"' 
k=l 

(4) 

k=l 

with x(0) = 0 for convenience. 

It   is   readily   seen   [Rruni,   et   al   (1974);   Mohler 
(1973)]   that   x^,   i   =   1    correspond   to   the 
terms in the Volterra series, and the corresponding 
kernels are generated as a "nesting" [Rao and 
Mohler (1975)] of linear-system impulse responses 
according to (4). 

The Volterra series for BLS may sometimes be 
approximated by a finite number of terms (4), and, 
in the case of weakly BLS, may be exactly repre- 
sented by a finite nunber, or decomposed into a 
finite nunber of linear systems with outputs 
multiplied together to form inputs to successive 
linear systems according to (4). Consequently, a 
physical system approximated (or given) by a finite 
hierarchical structure associated with (4) is 
conveniently analyzed by linear-system theory. 

PHYSICAL PROCESSES 

The hierarchical surveillance, decision and control 
structure which evolves for CBLS is demonstrated 
here by several relevant examples. Figure 1 
indicates the natural model which is derived from 
the chemical law of mass action and from cellular 
fission for the immune system. See Mohler, Bruni 
and Gandolfi  (1980), and Mohler (1982). 

First, the human-defense system includes various 
mechanisms to detect and to destroy an alien which 
is similar in structure to that associated with 
national defense. These include the humoral system 
(generating antibody, Ab), the cell-mediated iirmune 
system (CMI, generating macrophages, M^, cytotoxic 
T cells, T-, helper T cells, Tf,, and suppressor 
T cells, Tj), and stages of complement. 

The latter consists of nine cascaded BLS (i.e., 
enzyme-protein reactions) which successively 
amplify enzyme concentration until it "drills" the 
alien (e.g., tumor cell). Breaking down the alien 
permeability, fluid leaks in until the alien cell 
may burst apart. 

Ab receptors on the surface of certain white-blood 
cells detect aliens of specific chemical structure, 
and generate appropriate defense mechanisms to best 
isolate and destroy the alien substance (e.g., 
bacteria, chemical contaminants, tumors, etc.). 
Certain mechanisms are ineffective against certain 
aliens. E.g., Ab-complexes (Ab, Tf, and M^) may 
even shield a tumor while complement (triggered by 
a specific Ab) may be effective. The system 
involves chemically specific and nonspecific sur- 
veillance, communication, command and control 
(C^). M^, Tf. and Ab seem to be capable of 
alien destruction on their own, but the most 
effective defense involves an orchestrated 
combination of these processes. 

Feedback control evolves according to alien concen- 
tration and chemical structure, and according to 
concentrations of Ab, Tf, and Tj. The latter 
turn-on and turn-off the humoral process according 
to  its need for Ab and/or memory cells to establish 

Immunity and a future secondary response to 
Infection. 

Hierarchical control even occurs in the generation 
of Ab classes. E.g., one antibody is more effec- 
tive early in an Immune reaction while another is 
effective later. Hence, the well-known switch-over 
phenomenon for IgM to IgG is shown to be somewhat 
optimum by Perelson (1977). Anatomically, there is 
a hierarchical preference in the circulation of 
immune function. B and T cell precursors migrate 
to the lungs rapidly, but they also spend only a 
short duration there. On the other hand, a large 
number migrate to the spleen more slowly, and are 
trapped there for a much longer time period. 

Many of the innune control mechanisms, which are 
associated with the nonlinear feedback block in 
Fig. 1, are not well understood. But the plant 
Itself is pretty well defined by CBLS as shown in 
Fig. 1, Detailed mathematical models are presented 
by Mohler, Bruni and Gandolfi (1980), and Mohler 
(1982). 

Just as the Innune response evolves in a hierarch- 
ical fashion, so does the evolution of the human 
from the fertilized egg. A single cell is pro- 
grammed genetically with the necessary prescrip- 
tion, and life evolves by a sequence of carefully 
controlled chemical reactions, cellular divisions 
and differentiations. Again, CBLS formulate the 
basis of a mathematical  synthesis. 

National defense takes on a hierarchical C^ 
structure similar to that of body immune defense. 
Naval, air and land forces are coordinated with 
each also having subforces to deal with alien 
Intrusion. Central comnand headquarters may al- 
locate forces and various defense mechanisms 
according to certain criteria of performance. 

At the final level, competition between defense 
forces, x^ and y^, similar to biological 
species, may be modeled by CBLS in the general   form 

dx 
it -V ^ B^(u^)x . v^. 

^= -A/ + B^(Uy)y + Vy.- 

(5) 

Here x, y represent opposing forces of appropriate 
composition and dimension; v^, Vy are appro- 
priate vector force replenishments; A^, Ay are 
appropriate matrix, opposing-attrition coefficients 
such as for "aimed fire"; B^(-), By(-) are ap- 
propriate matrix, self-attrition and/or generation 
coefficients. /• are  appropriate cross 
controllers. For ''area tire" of constant level per 
force; Bx(-), By(-) are diagonal matrices, such 
*■'"*■ '■'- ■"■'■ •"' ■■ -' ' '-   "-- 1th control that the 1th diagonal element is the Uh contro 
component. I.e., u^^ =■ -a^-j - djy. 
Here, d^ Is an appropriate constant row vector, 
and a^j is a self-attrition coefficient. 
Uyj is defined similarly. This CBLS is a gen- 
eralized representation of the traditional 
Lanchester model. Dolansky (1964), and Wozencraft 
and Moose (1984). 

Hierarchical CBLS appear 1n numerous engineering 
applications such as chemical processes, nuclear 
power generation and heating ventilating and air- 
conditioning (HVAC) systems, see Mohler (1972). In 
the latter, for example, bilinear heat-transfer 
models are prominent. Oecisions are made to use 
solar storage, heat pumps and evaporative or 
refrigeratlve air conditioning according to changes 
In weather and various energy demands and costs. 
The latter involves stochastic processes as do most 
of those discussed above. For HVAC systems, random 
weather predictions are significant in the command 
and control process, and actual random weather 



variations can affect the model. Similarly, obser- 
vations of alien state 1s statistical In nature. 
The typical sonar or radar tracking in national 
defense and chemical tracking in immune defense are 
excellent examples. The synthesis of CBLS filters 
for this problem is studied by Halawani, Mbhler and 
Kolodziej (1984), and is shown to offer better 
performance than the extended Kalman filter. 

While stochastic games are significant for such 
applications, only the deterministic case is con- 
sidered next, as a prelude to the even more diffi- 
cult problem. Here competition may take place 
between defense forces and al ien forces. 

PURSUIT-EVASION GAMES 

Several-pursuers, one-evader deterministic games 
are the subject of this section. The solution to 
the game requires the introduction of a strategic 
variable, then the game of kind is studied to 
determine possible cooperations between two pur- 
suers. The optimal solution to a linear quadratic 
game and a simpler form of this solution are given, 
yielding the general solution to the N Pursuer - 
one evader game. A sensitivity study leads to a 
simple hierarchical structure which greatly reduces 
the amount of computation required. 

Let the position (or more generally state), x^, 
of an evader, E with control v, relative to pur- 
suer, P^ with control  u-j, be given by 

dx, 

It' ^'"1' "i'^'- C6) 

Here, x-j, u-|, v and f^ have appropriate 
dimensions. 

The capture occurs whenever one pursuer P^ gets E 
within its terminal manifold expressed by the quad- 
ratic equation at terminal  time,  tf: 

X^(tf)T^,X.(t,)  <r2. 

where T^,- is a given matrix and r-j a scalar. 
The team of pursuers minimizes an appropriate per- 
formance Index J, which E maximizes. This defines 
a single Hamiltonian for the team of pursuers. 
Therefore whenever a pursuer Is added to the game, 
one equation is missing. The corresponding missing 
variable will be called the strategic variable 
Zj, for player P^. This variable will be 
defined such that when z-f = 0, P, is of no use 
to the solution of the game, and the larger Zj, 
the more effective P^ is. 

The Game of Kind 

Once the setting of the game is known, those pur- 
suers that will be relevant must be determined. 
One way to proceed is to define for each pursuer 
the area where a copursuer must be located in order 
to allow (or not) cooperation. For each pair P,-, 
Pj the space is divided into the following six 
zones: 

1) ^l^joCi/Pj' If P.    belongs to this zone 

then P^ will not play any role In any game in- 
volving Pj, provided that Pj plays optimally. 
In this zone, z,- = 0. 

11)    z^P.^(P^/P.*).  If P.g belongs to this zone 

then Pj can play a role In a game Involving 
Pj only if E does not play optimally or if the 
presence of other pursuers forces E to deviate from 
the (Pj,  E)  optimal   strategy. 

ill)    z^P.   (P,/P.*).  If P.    belongs to this zone 
•J   J 0      1      J J 0 

then Pj will play a role in the (Pj, Pj, E) 
game. 

ZjUZjUZj =    zP^gCPj >.Pj)    =    the case in which the 

outcome of the (Pj, E) game is lower than for 
the (P,, E) game. 

1v)    z^PjotPj/Pi*)-  ^^ Pjo belongs to this zone 

then Pj will play a role in the (Pj, P^, E) 
game. 

v)    ZgP. (P./P^*). If P.    belongs to this zone 

then   Pj can    play   a   role    In    a   game    Involving 
Pj   only if   E   does   not   play  optimally   or   if   the 
presence of the pursuers  forces   E  to  deviate  from 
the (P-j, E) optimal  strategy. 

v1)    ZgP.  (P,/P^.*).  If P.    belongs to this zone 

then Pj will not play any role in any game in- 
volving Pj, provided that P^ plays optimally. 
In this zone, Zj = 0. 

z.Uz^Uz, =    zP.  (P. > P.)    =    the case  in which the 
4     b    0 JO    1 —    J 

outcome   of   the   {Pj,   E)    game    is   lower   than   for 
the  (Pj,  E)   game.     The  six  zones  cover  the whole 
space.        Here,    P^,    ?'i-    and    P<    refer    to    three 
different classes of copursuers in the game. 

As an example, the N-pursuers, 1-evader version of 
the wall-pursuit game presented by Isaacs (1965) 
could be renamed N cutters and fugitive railroad, 
where the evader of maximum speed 1 is constrained 
to the y axis. The minimum-time problem is con- 
sidered, where the pursuers Pj and P2, con- 
trolling their constant-speed heading, have the 
following respective characteristics: the capture 
sets are circles of radii 1 and 0.5; the maximum 
speeds are 2 and 1.5, and PIQ = (-4, 4). See 
Fig. 2. 

The zones are the same for every pursuer identical 
to Pj but are a function of Pjg. They were 
derived from the solution to the 1 vs. 1 game and 
according to geometric considerations. The same 
kind of definitions can be made for 3 pursuers; 
e.g., 

h^otVi*' Pj*' 

etc., but the derivation of the zones would require 
that the 2 vs. 1 game be solved first. 

The Game of Degree 

The game studied   1s  a  linear,   quadratic,  general- 
ized 2-pursuer, 1-evader game with 

dx. 
^= A,x, +B.u^ + C.V. (7) 

where 

T 2 
Xj(tf) '''j^^x^(tj:) = r.,    and 

/     ^12''fi'i'  2:U;R,U.-VTSV) 

'0 ' 

dt 

(8) 

is to be minimized by the pursuers and maximized by 
the evader. 

1-pursuer    vs.    1-evader    game. Let    Xp^,    \^j 



be the costate vectors required by the game, such 
that the transversal ity condition is given by 

^pi'V '^l^xi'^itV' ^ei'V = ^I'^xi'^if^f' 

where z-j,  Zj'  can be any nonzero  positive 
scalars. The Hamiltonians are 

*2{t. t^)  =  (A2 + N2Tp2+H2T^2'*2(^' V 

+ C2S-^c{tgl(*l(t. t^) 

(13) 

Hp= (A,x^ +B,u, +C,v)  Xp. 

'1 '"^''i^'l * "{''i"l " ^^^^'" 

"e " (^''l * ^•"i " '^i^'^i 

*^(x^Q,x, + u^R.u, - v^Sv). 

The open-loop Nash solution to the game is 

"i* ■ «;'«^p1*i(t- V^lo • 

V*   'S-lc{T^,*,{t. t^)x,„ . 

where 

(9) 

CIO) 

«.{t. t^)  =  (A,-N,Tp,+M^T^^)<.,(t. t^). 

where      *j(t,t) = I 

N^  = B.R"j^B^,    M^ =• C^ST^CJ,  and 

^pi ' -*;^pi - ^i^ - ^pi^^i - ^pi^l^ei ' "i' 
(11) 

*ei -^Vei - Wi - ^ei^i Vei"l^ei - "i' 

where 

^pi'^f' ' ^i^xi-    ^ei'V - ^i'T'^i- 

To this solution, another two conditions, restrict- 
ing the solution must be added. I.e., z^ 2 " 
when substituted into the Hamiltonian provides the 
playability condition, and 

^Ii(tf)Ji(V<0 

is the capture condition. 

The solution is a classical one. A complete deri- 
vation of the two-player, linear, quadratic game is 
given by Ichikawa (1976) and Hamalainen (197R). A 
procedure to decouple the Riccati equations (11) is 
given by Simaan and Cruz (1973) taking advantage of 
a preliminary solution conrnon to several initial 
conditions, reducing the problem to the computation 
of successive linear equations. 

2-pursuer vs. 1-evader game. The four costate 
vectors required are: Xp-j, Xgj, i = 1, 2, 
where 

^pi'V -^i^xi'^itV'   ^eit^f' ='l'^i^i(*f' 

The open-loop Nash solution to the game is 

"i = "i^^Ki^t^' V^-0' '-^'^- (12) 

V* = S-\c{T^l«^(t, Vxio + CJT32 2(t.  VX20), 

*l(t,t) =■ ♦2(t.t) = I. and 

^1^1 = ^-\l\ - ^^pl - ^l^fpl - ^I'^l^el 

+ Ql]Xi - TpiCiS-lcjT^2><2' 

*ei^l ' ^-\A - *I^el - \lh^X - ^I'^f el 

(14) 

V^'Z ' l^-%2^2 - ^2^2 - ^2''2^p2 " ^p2"2^e2 

^62=^2 ' ^-Te2^2 - *2^e2 " ^e2''2^p2 " ^2"2^e2 

-''2>2- V25'^'=IVl' 
where 

Tpl'V) - ^i^xl' ^ei'V' = ^?x1'      1 ' 1- 2- 

The solution is very complex compared to the 1 vs. 
1 game. The differential systems, (13) and (14) 
are tightly coupled requiring parallel computation 
whereas the solution to the 1 vs. 1 game could 
proceed in several   steps. 

Note that only one of the two pairs of strategic 
variables (zj, z\), (i'^, Z2) can be fixed, 
the other one must be selected properly to cor- 
respond to the  initial  condition of the game. 

Keeping the same controls, but setting z? = 0 
z^ = 0 and exploring all the possible X2(tf) 
will give the help zone, H = ziilz2Uz_-iUz4. 
the area outside of which P2 does not play a role 
in the optimal   (Pj, P2, E) game. 

Simplifying the 2 vs. 1 solution, define Z^ such 
that 

^i^el^l ' ^ei^i  ■ i » 1, 2. 

(Note that Zi " I, the identity.) Now, the solu- 
tion, while (12) and (13) remain identical, is as 
follows. 

Tni   =■ -T„,A,  - A T„,  - T„,N,T„.   - T ,M,T , pi pi 1       1 pi       pi 1 pi       pi 1 el 

- \lh'''^''\h\l ' «!• 

^el - -^el^l - ^l\l - ^iNfpi - T^iH^T^i 

(15) 

^el':iS''cIz2^el - 5i. 

*l(t.t^)  = (Ai-NjTpj.MjT^j)0j(t.t^) where 



Wf^ ' h\v \i (tj 1 xl* l,n 

'p2 

'e2 

-T    A 
'^2^p2 " ^p2'*2^p2 " ''^p2"2^e2 

ip2'-2^    ^-1^2  'e2 

-7^2*2 - *2'''e2 " '''e2''2^p2 " ^62^2^62 

(16) 

- TgjCjS   CjZ2 Tg2 

where 

Vf' ^2^x2- ^e2"f^ ^2^2; and 

Z-1  = Z-^(AJ + O^Jll)  -  (A[ + Q^Tl\nl\ (17) 

Z2{*f)Wl(V -if V2(V> Z2'(tf)=[Z2(t,)rl. 

The similarities with the 1 vs. I game are now 
obvious; the equations are decoupled and can be 
solved in turn. However the problem of guessing 
the strategic variable remains. Note the simplifi- 
cation that Qi = Q2 " 0 would  introduce. 

Consider Fig. 3 as an example of a 2-dimensional, 
1inear, quadratic game with identical pursuers. 
Here, Q = 0, R = S =-I, 

-1 r 
.    B = 

'2' 
c = 

T 

Li -2j LoJ LoJ 
A = 

Also, uj, U2. V are scalars, T^ = I,  r = 1. 

The capture zone for the 1 vs. 1 game, defined by 
J >_ -iolO is very limited, as is the usable 
part of the terminal manifold. However, for the 
2 vs. 1 game, there is no limitation on the usable 
part, and the capture zone is much larger. Ending 
on identical points, variations on the strategic 
variable Z2 leads to different trajectories. The 
proper values for xjCtf), X2(tf) and zj 
must be selected in order to fit with the initial 
conditions xjg,  X2n' 

Solution to an N-identical-pursuer, 1-evader linear 
quadratic game. The solution, for 0=0, takes the 
following form with Xi(t), x-j(to) = xjo. 
given by (7): 

-1-, Let    84 =■ -T.M V Z,- Z/T M        'i' E^J'1'1 
J = i 

j ^i ^i ^ "i ' -T^   y*   Z, Z?T, + W 

and    W 
1+1,n 

^M L 'i '^'^ 

Except for the addition of s-i and the sum in v*, 
the solution  is  identical  to tne 1 vs. 1 game. 

This suggests a sensitivity study on both 6i and 
W-j. In some instances the s-i are negligible 
when the pursuers represent equal threats to the 
evader. In this case the difference between the 1 
vs. 1 game and the n vs. 1 game is seen to come 
hardly from the controls adopted by the pursuers 
but from the control adopted by the evader. 8-| 
is an Important term if P^ plays a minor role in 
the capture. On the other hand W^ is always neg- 
ligible when the playability condition is not 
violated, provided that the pursuers be classified 
in order of importance, Pj being the most impor- 
tant (the closest one to E for the minimum time 
problems). Consequently, the structure is shown in 
Fig. 4 where each pursuer solves (18) - (20), 
finding the couple x-j(tf), z-j corresponding 
to x-jg,  and passes this  information forward. 

A parallel structure can be derived from this "rip- 
ple structure," enhancing the independence of the 
individual pursuers with respect to the team, but 
at the expense of an Increased number of equations 
to solve. A "minor" pursuer can be added but the 
gain produced by this pursuer must be weighted 
against the amount of delay or computation that 
this very pursuer will have to cope with. This 
structure, implemented for the previous example, 
did not show any variation in state, control or 
performance superior to 0.1% with the rigorous 
solution. 

CONCLUSIONS AND DIRECTIONS 

Convenient hierarchical structures for pursuit- 
evasion games (or coiimand and control) are gener- 
ated along with an overview of the role of BIS in 
generalized defense and other relevant applica- 
tions. Future plans call for an integration of 
this analysis with stochastic nonlinear observa- 
tion, and stochastic BLS models such as are 
relevant to estimation and control in the applica- 
tions presented above. 

'**:.* 
u. = B'T.X,.      V* = C^T^X,. (18) 

l.n 
•T.  =.T.A-A^T,  -T,(M.N)T,  -T,M VZjZ-\. 

jTi (19) 

where 

!,=Z.^-A^Z,Z-^=Z-V-A^Z-^ 

with Z^ = I, 
(20) 

^i('f'WltV' =77^1^-    ^i'tV' - fZ,(t,)]-l. 
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TWO CurTERS A«) F^JGlTi^^ RALROAO 

u refers to control   reactivity with subscripts 
c for complement,  B for B cells,  T for T 
cells, M for macrophages. 

BLSC refers to coupled BLS. 

C3, CQ refers to appropriate complement 
stages. 

Other terms defined   in text. 

Fig. 1    BLS Synthesis of Significant Immune Proc- 
esses 

If:    P2g C Z,   : P. alone will  capture E. 

P.Q C Z- : Pp alone will  capture an optimal  E. 

Pyr. CU : Py will be helped by P^ in captur- 

ing E. 

Ppg C Z. : P, will be helped by P^ in captur- 

ing E. 

P,„ C Z, : P.  alone will  capture an optimal E. 

P.g C Zg : P,   alone will  capture E. 

Fig. 2    Influence of the Position of P2 on the 
Resulting Game.    Pig = (4,  -4). 

\ 
L»CM OUAORATIC GAME 
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Fig. 3    2-Pursuer, 1-Evader Relaffve Trajectories 
Leading to Capture. 
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Fig. 4    n-Pursuer Suboptimal  Hierarchical  Struc- 
ture. 


